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SOLUTION TO PROBLEM SET 10
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1. French 5-6.

(a.) All three springs are identical, with constant
k. The equations of motion are

d2xA

dt2
+ 2ω2

0xA − ω2
0xB = 0

d2xB

dt2
+ 2ω2

0xB − ω2
0xA = 0

We plug in a guessed solution, where the two
masses oscillate at the same frequency, but with
different amplitudes A and B. This gives

−ω2A + 2ω2
0A − ω2

0B = 0 ⇒ B = A
2ω2

0 − ω2

ω2
0

−ω2B + 2ω2
0B − ω2

0A = 0 ⇒ B = A
ω2

0

2ω2
0 − ω2

Equating these we see that

(2ω2
0 − ω2)2 − ω4

0 = 0

Solving this quadratic equation, we find that the
two frequencies are ω2 = ω2

0 and ω2 = 3ω2
0 .

(b.) One mass is displaced by 5 cm. This excites
each normal mode equally, with amplitude 2.5
cm. To see this, first excite the first normal mode
with amplitude 2.5 cm. Now both masses are
+2.5 cm from equilibrium. Now excite the sec-
ond normal mode, also with amplitude 2.5 cm.
This moves one mass forward 2.5 cm, and the
other back 2.5 cm. One is now 5cm from equilib-
rium, and the other is at its equilibrium position.
It is mass B that is displaced, so the masses obey

xA = 2.5 cosω0t − 2.5 cos
√
3ω0t

xB = 2.5 cosω0t + 2.5 cos
√
3ω0t

(c.) After a time τ such that cosω0τ =
cos

√
3ω0τ , mass A returns to its equilibrium

position xA = 0. This happens when ω0τ is in
the second quadrant and

√
3ω0τ is in the third:

π − ω0τ =
√
3ω0τ − π

ω0τ =
2π

1 +
√
3

However, at t = τ , mass B will not have re-
turned to its full original |displacement| since
| cos τ | < 1. Thus, even though mass A will be
back in place, mass B will not, and the sys-
tem will not have returned to (plus or minus) its
original state. In fact, because the ratio of the
two normal frequencies is irrational, once both
normal modes are excited the system can never
return to its original state.

2. French 5-10.
The equations of motion for this double spring
system are as follows. The coordinate of the top
mass is xA and the coordinate of the bottom
mass is xB .

d2xA

dt2
+ 2ω2

0xA − ω2
0xB = 0

d2xB

dt2
+ ω2

0xB − ω2
0xA = 0

Plugging in the standard guess that both masses
oscillate at the same frequency, but at ampli-
tudes A and B, we get the following equations.

(2ω2
0 − ω2)A = ω2

0B

(ω2
0 − ω2)B = ω2

0A

Equating these, we get the quadratic equation

ω4 − 3ω2
0ω2 + ω4

0 = 0

The solutions to this equation are

ω2
± = ω2

0

3±√
5
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The amplitudes in these modes are easily found.
For ω+, we have

(
2ω2

0 − 3
2
ω2

0 −
√
5
2

ω2
0

)
A+ = ω2

0B+

B+ =
1−√

5
2

A+

Likewise for ω−,

B− =
1 +

√
5

2
A−

3. French 5-14.
In the first normal mode, the three particles have
an amplitude ratio

√
2/2 : 1 :

√
2/2. The second

normal mode has amplitude ratios 1 : 0 : −1.
The third normal mode has amplitude ratios√
2/2 : −1 :

√
2/2.

4. A wave is described by

y(x, t) = �
[
A+ei(ωt−kx) + A−ei(ωt+kx)

]
(a.) We know that the wave is moving to the
left. This corresponds to the second exponen-
tial. To see this, we note that a specific place
on the wave train always has the same value of
ωt ± kx. We want to see what happens when t
increases. For the solution exp(i(ωt + kx)), we
see that as t increases, x must decrease to stay
on the same place in the wave. This is a left
moving wave. We thus note that A+ = 0. We
can now write the complex constant A− = Aeiδ,
where A and δ are real.

y(x, t) = �
[
Aei(ωt+kx+δ)

]
At x = 0 we know that the time dependence in
proportional to cosωt+sinωt. This tells us that

cos(ωt + δ) ∝ cosωt + sinωt

Using the formula for the cosine of a sum

cos(ωt + δ) = cosωt cos δ − sinωt sin δ

For this to work we see that

cos δ = − sin δ ⇒ δ = −π

4

Now we can find the amplitude and frequency.
The solution is

y(x, t) = A cos
(
ωt + kx − π

4

)

The amplitude is given as 0.01 m, and the period
is 10−2 sec. The frequency ω = 2π/T = 200π
sec−1. The speed of waves on the string is c =10
m/sec, and we know that ω = ck, so this tells us
that k = 20π m−1. We now have the final result

y(x, t) = �
[
0.01ei(200πt+20πx−π/4)

]
= 0.01 cos(200πt + 20πx − π/4)

(b.) We can now compute the maximum trans-
verse speed and maximum slope. The transverse
speed is

dy

dt
= −2π sin(200πt + 20πx − π/4)

The maximum value that the sine takes is 1,
so the maximum transverse speed is 2π = 6.28
m/sec. We can likewise find the maximum slope

dy

dx
= −0.2π sin(200πt + 20πx − π/4)

The maximum slope is thus π/5 = 0.628.

5. The phase velocity of surface waves is given by

vph =

√
2πT

λρ
+

gλ

2π
=

√
kT

ρ
+

g

k

(a.) Notice that at both zero and infinite
wavenumber, the phase velocity is infinite. To
find the minimum phase velocity, we differentiate
vph with respect to k and set to zero.

dvph

dk
=

T/ρ − g/k2

2
√

kT/ρ + g/k
= 0

k =
√

ρg

T
⇒ λ = 2π

√
T

ρg
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The phase velocity at this wavenumber is

vph =
(
4gT

ρ

)1/4

The frequency ω = vphk, which gives

ω =
(
4gT

ρ

)1/4 √
ρg

T
=

(
4ρg3

T

)1/4

(b.) The group velocity of this wave is given by

vgr =
dω

dk

∣∣∣∣
k=

√
ρg/T

We know that ω = vphk, so

ω =

√
Tk3

ρ
+ gk

Taking the derivative with respect to k and eval-
uating at the wavenumber we found before

dω

dk

∣∣∣
k=

√
ρg/T

=
3Tk2/ρ + g

2
√

Tk3/ρ + gk

∣∣∣
k=

√
ρg/T

=

√
2g
k

=
(4gT

ρ

)1/4

The slowest waves have the same phase and
group velocities. This is a general result. Look
at the equation for the frequency, and differenti-
ate it to get the group velocity

ω = vphk ⇒ dω

dk
= vgr = vph + k

dvph

dk

We chose the phase velocity to be a minimum,
so vgr = vph.

6. A string has tension S and linear mass den-
sity µ. This tells us the phase velocity of waves
on it, c =

√
S/µ. The string has length L. At

t = 0, the string’s shape is

y(x, 0) = 3 sin
πx

L
+ sin

3πx

L

(a.) The frequencies of each of these is ω = ck,
so the first term has ω1 = cπ/L and the second

term has frequency ω2 = 3cπ/L. The peri-
ods of these two oscillations are T1 = 2L/c and
T2 = 2L/3c. The period of the total oscillation
is the longer period, T1. In one long period the
fast oscillation has had exactly three periods.
Thus, the period is

T =
2L
c

= 2L
√

µ

S

(b.) After a time T/2, the first term has gone
through a half period, and the second term has
gone through one and a half periods. In both
cases, this just means that there is a minus sign
out front.

y(x, T/2) = −3 sin
πx

L
− sin

3πx

L

7. A string of frequency 256 Hz is plucked
in the exact center. This means that the even
numbered modes are not exited at all. This is be-
cause the initial condition is symmetric around
the middle of the string, and the even numbered
modes are antisymmetric around the middle of
the string. The odd numbered modes are also
symmetric around the center of the string, so
they survive. These frequencies are

fn = (2n + 1)256 Hz, n = 0 . . .∞


